Домой Оборудование Что такое нейтрон в физике: строение, свойства и использование. Структура атома: что такое нейтрон? Роль нейтрона в делении ядра урана

Что такое нейтрон в физике: строение, свойства и использование. Структура атома: что такое нейтрон? Роль нейтрона в делении ядра урана

Толковый словарь русского языка. Д.Н. Ушаков

нейтрон

нейтрона, м. (от латин. neutrum, букв. ни то, ни другое) (физ. нов.). Входящая в ядро атома материальная частица, лишенная электрического заряда, электрически нейтральная.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

нейтрон

А, м. (спец.). Электрически нейтральная элементарная частица с массой, почти равной массе протона.

прил. нейтронный, -ая, -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

нейтрон

м. Электрически нейтральная элементарная частица.

Энциклопедический словарь, 1998 г.

нейтрон

НЕЙТРОН (англ. neutron, от лат. neuter - ни тот, ни другой) (n) нейтральная элементарная частица со спином 1/2 и массой, превышающей массу протона на 2,5 электронных масс; относится к барионам. В свободном состоянии нейтрон нестабилен и имеет время жизни ок. 16 мин. Вместе с протонами нейтрон образуют атомные ядра; в ядрах нейтрон стабилен.

Нейтрон

(англ. neutron, от лат. neuter ≈ ни тот, ни другой; символ n), нейтральная (не обладающая электрическим зарядом) элементарная частица со спином 1/2 (в единицах постоянной Планка) и массой, незначительно превышающей массу протона. Из протонов и Н. построены все ядра атомные. Магнитный момент Н. равен примерно двум ядерным магнетонам и отрицателен, т. е. направлен противоположно механическому, спиновому, моменту количества движения. Н. относятся к классу сильно взаимодействующих частиц (адронов) и входят в группу барионов, т. е. обладают особой внутренней характеристикой ≈ барионным зарядом, равным, как и у протона (р), +

    Н. были открыты в 1932 английским физиком Дж. Чедвиком, который установил, что обнаруженное немецкими физиками В. Боте и Г. Бекером проникающее излучение, возникающее при бомбардировке атомных ядер (в частности, бериллия) a-частицами, состоит из незаряженных частиц с массой, близкой к массе протона.

    Н. устойчивы только в составе стабильных атомных ядер. Свободный Н. ≈ нестабильная частица, распадающаяся на протон, электрон (е-) и электронное антинейтрино:

    среднее время жизни Н. t » 16 мин. В веществе свободные Н. существуют ещё меньше (в плотных веществах единицы ≈ сотни мксек) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в результате ядерных реакций (см. Нейтронные источники). В свою очередь, свободный Н. способен взаимодействовать с атомными ядрами, вплоть до самых тяжёлых; исчезая, Н. вызывает ту или иную ядерную реакцию, из которых особое значение имеет деление тяжёлых ядер, а также радиационный захват Н., приводящий в ряде случаев к образованию радиоактивных изотопов. Большая эффективность Н. в осуществлении ядерных реакций, своеобразие взаимодействия с веществом совсем медленных Н. (резонансные эффекты, дифракционное рассеяние в кристаллах и т.п.) делают Н. исключительно важным орудием исследования в ядерной физике и физике твёрдого тела. В практических приложениях Н. играют ключевую роль в ядерной энергетике производстве трансурановых элементов и радиоактивных изотопов (искусственная радиоактивность), а также широко используются в химическом анализе (активационный анализ) и в геологической разведке (нейтронный каротаж).

    В зависимости от энергии Н. принята их условная классификация: ультрахолодные Н. (до 10-7эв), очень холодные (10-7≈10-4 эв), холодные (10-4≈5×10-3эв), тепловые (5×10-3≈0,5 эв), резонансные (0,5≈104 эв), промежуточные (104≈105эв), быстрые (105≈108 эв), высокоэнергичные (108≈1010эв) и релятивистские (³ 1010 эв); все Н. с энергией до 105эв объединяют общим названием медленные нейтроны .

    ══О методах регистрации Н. см. Нейтронные детекторы.

    Основные характеристики нейтронов

    Масса . Наиболее точно определяемой величиной является разность масс Н. и протона: mn ≈ mр= (1,29344 ╠ 0,00007) Мэв, измеренная по энергетическому балансу различных ядерных реакций. Из сопоставления этой величины с массой протона получается (в энергетических единицах)

    mn = (939,5527 ╠ 0,0052) Мэв;

    это соответствует mn» 1,6╥10-24г, или mn» 1840 mе, где mе ≈ масса электрона.

    Спин и статистика. Значение 1/2 для спина Н. подтверждается большой совокупностью фактов. Непосредственно спин был измерен в опытах по расщеплению пучка очень медленных Н. в неоднородном магнитном поле. В общем случае пучок должен расщепиться на 2J+ 1 отдельных пучков, где J ≈ спин Н. В опыте наблюдалось расщепление на 2 пучка, откуда следует, что J = 1/

    Как частица с полуцелым спином, Н. подчиняется Ферми ≈ Дирака статистике (является фермионом); независимо это было установлено на основе экспериментальных данных по строению атомных ядер (см. Ядерные оболочки).

    Электрический заряд нейтрона Q = 0. Прямые измерения Q по отклонению пучка Н. в сильном электрическом поле показывают, что, по крайней мере, Q < 10-17e, где е ≈ элементарный электрический заряд, а косвенные измерения (по электрической нейтральности макроскопических объёмов газа) дают оценку Q < 2╥10-22е.

    Другие квантовые числа нейтрона . По своим свойствам Н. очень близок протону: n и р имеют почти равные массы, один и тот же спин, способны взаимно превращаться друг в друга, например в процессах бета-распада; они одинаковым образом проявляют себя в процессах, вызванных сильным взаимодействие, в частности ядерные силы , действующие между парами р≈р, n≈p и n≈n, одинаковы (если частицы находятся соответственно в одинаковых состояниях). Такое глубокое сходство позволяет рассматривать Н. и протон как одну частицу ≈ нуклон, которая может находиться в двух разных состояниях, отличающихся электрическим зарядом Q. Нуклон в состоянии с Q = + 1 есть протон, с Q = 0 ≈ Н. Соответственно, нуклону приписывается (по аналогии с обычным спином) некоторая внутренняя характеристика ≈ изотонический спин I, равный 1/2, «проекция» которого может принимать (согласно общим правилам квантовой механики) 2I + 1 = 2 значения: + 1/2 и ≈1/2. Т. о., n и р образуют изотопический дублет (см. Изотопическая инвариантность): нуклон в состоянии с проекцией изотопического спина на ось квантования + 1/2 является протоном, а с проекцией ≈1/2 ≈ Н. Как компоненты изотопического дублета, Н. и протон, согласно современной систематике элементарных частиц, имеют одинаковые квантовые числа: барионный заряд В =+ 1, лептонный заряд L = 0, странность S = 0 и положительную внутреннюю чётность . Изотопический дублет нуклонов входит в состав более широкой группы «похожих» частиц ≈ так называемый октет барионов с J = 1/2, В = 1 и положительной внутренней чётностью; помимо n и р в эту группу входят L-, S╠-, S0-, X
    --, X0- гипероны , отличающиеся от n и р странностью (см. Элементарные частицы).

    Магнитный дипольный момент нейтрона, определённый из экспериментов по ядерному магнитному резонансу, равен:

    mn = ≈ (1,91315 ╠ 0,00007) mя,

    где mя=5,05×10-24эрг/гс ≈ ядерный магнетон. Частица со спином 1/2, описываемая Дирака уравнением, должна обладать магнитным моментом, равным одному магнетону, если она заряжена, и нулевым, если не заряжена. Наличие магнитного момента у Н., так же как аномальная величина магнитного момента протона (mр = 2,79mя), указывает на то, что эти частицы имеют сложную внутреннюю структуру, т. е. внутри них существуют электрические токи, создающие дополнительный «аномальный» магнитный момент протона 1,79mя и приблизительно равный ему по величине и противоположный по знаку магнитный момент Н. (≈1,9mя) (см. ниже).

    Электрический дипольный момент. С теоретической точки зрения, электрический дипольный момент d любой элементарной частицы должен быть равен нулю, если взаимодействия элементарных частиц инвариантны относительно обращения времени (Т-инвариантность). Поиски электрического дипольного момента у элементарных частиц являются одной из проверок этого фундаментального положения теории, и из всех элементарных частиц, Н. ≈ наиболее удобная частица для таких поисков. Опыты по методу магнитного резонанса на пучке холодных Н. показали, что dn < 10-23см╥e. Это означает, что сильное, электромагнитное и слабое взаимодействия с большой точностью Т-инвариантны.

    Взаимодействия нейтронов

    Н. участвуют во всех известных взаимодействиях элементарных частиц ≈ сильном, электромагнитном, слабом и гравитационном.

    Сильное взаимодействие нейтронов . Н. и протон участвуют в сильных взаимодействиях как компоненты единого изотопического дублета нуклонов. Изотопическая инвариантность сильных взаимодействий приводит к определённой связи между характеристиками различных процессов с участием Н. и протона, например эффективные сечения рассеяния p+-мезона на протоне и p
    --мезона на Н. равны, так как системы p+р и p-n имеют одинаковый изотопический спин I = 3/2 и отличаются лишь значениями проекции изотопического спина I3 (I3 = + 3/2 в первом и I3 = ≈ 3/2 во втором случаях), одинаковы сечения рассеяния К+ на протоне и К╟на Н, и т.п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов на ускорителях высокой энергии. [Ввиду отсутствия мишеней, состоящих из Н., данные о взаимодействии с Н. различных нестабильных частиц извлекаются главным образом из экспериментов по рассеянию этих частиц на дейтроне (d) ≈ простейшем ядре, содержащем Н.]

    При низких энергиях реальные взаимодействия Н. и протонов с заряженными частицами и атомными ядрами сильно различаются из-за наличия у протона электрического заряда, обусловливающего существование дальнодействующих кулоновских сил между протоном и др. заряженными частицами на таких расстояниях, на которых короткодействующие ядерные силы практически отсутствуют. Если энергия столкновения протона с протоном или атомным ядром ниже высоты кулоновского барьера (которая для тяжелых ядер порядка 15 Мэв), рассеяние протона происходит в основном за счёт сил электростатического отталкивания, не позволяющих частицам сблизиться до расстояний порядка радиуса действия ядерных сил. Отсутствие у Н. электрического заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к атомным ядрам. Именно это обусловливает уникальную способность Н. сравнительно малых энергий вызывать различные ядерные реакции, в том числе реакцию деления тяжёлых ядер. О методах и результатах исследований взаимодействия Н. с ядрами см. в статьях Медленные нейтроны, Нейтронная спектроскопия, Ядра атомного деление, Рассеяние медленных Н. на протонах при энергиях вплоть до 15 Мэв сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется взаимодействием n ≈ р в состоянии относительного движения с орбитальным моментом количества движения l = 0 (так называемая S-волна). Рассеяние в S-cocтоянии является специфически квантовомеханическим явлением, не имеющим аналога в классической механике. Оно превалирует над рассеянием в др. состояниях, когда де-бройлевская длина волны Н.

    порядка или больше радиуса действия ядерных сил (≈ постоянная Планка, v ≈ скорость Н.). Поскольку при энергии 10 Мэв длина волны Н.

    эта особенность рассеяния Н. на протонах при таких энергиях непосредственно даёт сведения о порядке величины радиуса действия ядерных сил. Теоретическое рассмотрение показывает, что рассеяние в S-cocтоянии слабо зависит от детальной формы потенциала взаимодействия и с хорошей точностью описывается двумя параметрами: эффективным радиусом потенциала r и так называемой длиной рассеяния а. Фактически для описания рассеяния n ≈ р число параметров вдвое больше, так как система np может находиться в двух состояниях, обладающих различными значениями полного спина: J = 1 (триплетное состояние) и J = 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эффективные радиусы взаимодействия в синглетном и триплетном состояниях различны, т. е. ядерные силы зависят от суммарного спина частиц, Из экспериментов следует также, что связанное состояние системы np (ядро дейтерия) может существовать лишь при суммарном спине 1, в то время как в синглетном состоянии величина ядерных сил недостаточна для образования связанного состояния Н. ≈ протон. Длина ядерного рассеяния в синглетном состоянии, определённая из опытов по рассеянию протонов на протонах (два протона в S-cocтоянии, согласно Паули принципу, могут находиться только в состоянии с нулевым суммарным спином), равна длине рассеяния n≈p в синглетном состоянии. Это согласуется с изотопической инвариантностью сильных взаимодействий. Отсутствие связанной системы пр в синглетном состоянии и изотопическая инвариантность ядерных сил приводят к выводу, что не может существовать связанной системы двух Н. ≈ так называемый бинейтрон (аналогично протонам, два Н. в S-cocтоянии должны иметь суммарный спин, равный нулю). Прямых опытов по рассеянию n≈n не проводилось ввиду отсутствия нейтронных мишеней, однако, косвенные данные (свойства ядер) и более непосредственные ≈ изучение реакций 3H + 3H ╝ 4He + 2n, p- + d ╝ 2n + g ≈ согласуются с гипотезой изотопической инвариантности ядерных сил и отсутствием бинейтрона. [Если бы существовал бинейтрон, то в этих реакциях наблюдались бы при вполне определенных значениях энергии пики в энергетических распределениях соответственно a-частиц (ядер 4He) и g-квантов.] Хотя ядерное взаимодействие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связанной системы, состоящей из большого числа одних только Н. ≈ нейтронных ядер. Этот вопрос требует дальнейшего теоретического и экспериментального изучения. Попытки обнаружить на опыте ядра из трёх-четырёх Н., а также ядра 4H, 5H, 6H не дали пока положительного результата, Несмотря на отсутствие последовательной теории сильных взаимодействий, на основе ряда существующих представлении можно качественно понять некоторые закономерности сильных взаимодействий и структуры Н. Согласно этим представлениям, сильное взаимодействие между Н. и др. адронами (например, протоном) осуществляется путём обмена виртуальными адронами (см. Виртуальные частицы) ≈ p-мезонами, r-мезонами и др. Такая картина взаимодействия объясняет короткодействующий характер ядерных сил, радиус которых определяется комптоновской длиной волны самого лёгкого адрона ≈ p-мезона (равной 1,4×10-13см). Вместе с тем она указывает на возможность виртуального превращения Н. в др. адроны, например процесс испускания и поглощения p-мезона: n ╝ p + p- ╝ n. Известная из опыта интенсивность сильных взаимодействий такова, что Н. подавляющее время должен проводить в подобного рода «диссоциированных» состояниях, находясь как бы в «облаке» виртуальных p-мезонов и др. адронов. Это приводит к пространственному распределению электрического заряда и магнитного момента внутри Н., физические размеры которого определяются размерами «облака» виртуальных частиц (см. также Формфактор). В частности, оказывается возможным качественно интерпретировать отмеченное выше приблизительное равенство по абсолютной величине аномальных магнитных моментов Н. и протона, если считать, что магнитный момент Н. создаётся орбитальным движением заряженных p
    --мезонов, испускаемых виртуально в процессе n ╝ p + p- ╝ n, а аномальный магнитный момент протона ≈ орбитальным движением виртуального облака p+-мезонов, создаваемого процессом р ╝ n + p+ ╝ р.

    Электромагнитные взаимодействия нейтрона. Электромагнитные свойства Н. определяются наличием у него магнитного момента, а также существующим внутри Н. распределением положительного и отрицательного зарядов и токов. Все эти характеристики, как следует из предыдущего, связаны с участием Н. в сильном взаимодействии, обусловливающем его структуру. Магнитный момент Н. определяет поведение Н. во внешних электромагнитных полях: расщепление пучка Н. в неоднородном магнитном поле, прецессию спина Н. Внутренняя электромагнитная структура Н. проявляется при рассеянии электронов высокой энергии на Н. и в процессах рождения мезонов на Н. g-квантами (фоторождение мезонов). Электромагнитные взаимодействия Н. с электронными оболочками атомов и атомными ядрами приводят к ряду явлений, имеющих важное значение для исследования строения вещества. Взаимодействие магнитного момента Н. с магнитными моментами электронных оболочек атомов проявляется существенно для Н., длина волны которых порядка или больше атомных размеров (энергия Е < 10 эв), и широко используется для исследования магнитной структуры и элементарных возбуждений (спиновых волн) магнитоупорядоченных кристаллов (см. Нейтронография). Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных Н. (см. Поляризованные нейтроны).

    Взаимодействие магнитного момента Н. с электрическим полем ядра вызывает специфическое рассеяние Н., указанное впервые американским физиком Ю. Швингером и потому называемое «швингеровским». Полное сечение этого рассеяния невелико, однако при малых углах (~ 3╟) оно становится сравнимым с сечением ядерного рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы.

    Взаимодействие Н. ≈ электрон (n≈e), не связанное с собственным или орбитальным моментом электрона, сводится в основном к взаимодействию магнитного момента Н. с электрическим полем электрона. Другой, по-видимому меньший, вклад в (n≈e)-взаимодействие может быть обусловлен распределением электрических зарядов и токов внутри Н. Хотя (n≈e)-взаимодействие очень мало, его удалось наблюдать в нескольких экспериментах.

    Слабое взаимодействие нейтрона проявляется в таких процессах, как распад Н.:

    захват электронного антинейтрино протоном:

    и мюонного нейтрино (nm) нейтроном: nm + n ╝ р + m-, ядерный захват мюонов: m- + р ╝ n + nm, распады странных частиц, например L ╝ p╟ + n, и т.д.

    Гравитационное взаимодействие нейтрона. Н. ≈ единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие ≈ искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных Н. Измеренное гравитационное ускорение Н. в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.

    Нейтроны во Вселенной и околоземном пространстве

    Вопрос о количестве Н. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной (см. Космология), значительная часть первоначально существовавших свободных Н. при расширении успевает распасться. Часть Н., которая оказывается захваченной протонами, должна в конечном счёте привести приблизительно к 30%-ному содержанию ядер Не и 70%-ному ≈ протонов. Экспериментальное определение процентного состава He во Вселенной ≈ одна из критических проверок модели горячей Вселенной.

    Эволюция звёзд в ряде случаев приводит к образованию нейтронных звёзд, к числу которых относятся, в частности, так называемые пульсары .

    В первичной компоненте космических лучей Н. в силу своей нестабильности отсутствуют. Однако взаимодействия частиц космических лучей с ядрами атомов земной атмосферы приводят к генерации Н. в атмосфере. Реакция 14N (n, р)14С, вызываемая этими Н., ≈ основной источник радиоактивного изотопа углерода 14C в атмосфере, откуда он поступает в живые организмы; на определении содержания 14C в органических остатках основан радиоуглеродный метод геохронологии. Распад медленных Н., диффундирующих из атмосферы в околоземное космическое пространство, является одним из основных источников электронов, заполняющих внутреннюю область радиационного пояса Земли.

    Бомбардировка ядер урана нейтронами бериллиевого стержня забирала гораздо больше энергии, чем ее высвобождалось при первичном делении.

    Поэтому для работы реактора было необходимо, чтобы каждый атом расщепленный нейтронами

    Поэтому для работы реактора было необходимо, чтобы каждый атом, расщепленный нейтронами бериллиевого стержня, в свою очередь вызывал расщепление других атомов.

    Хороший источник нейтронов был по карману даже небогатой лаборатории: немножко радия и несколько граммов бериллиевого порошка.

    Такое же количество в циклотроне можно было получить за два дня, если использовать нейтроны , выбиваемые разогнанными дейтронами из бериллиевой мишени.

    Затем удалось показать, что бериллиевое излучение на самом деле состоит из гамма-лучей и потока нейтронов .

    Понимаете, первоначальный поток нейтронов представит собой простое сферическое расширение от первичного взрыва, но его захватит бериллий, - объяснял Фромм, стоя рядом с Куати.

    Ад, акаша, алкоголизм, Ангел, антивещество, антигравитация, антифотон, астения, астрология, атом, Армагеддон, аура, аутогенная тренировка, белая горячка, бессонница, бесстрастие, Бог, божественное, божественный путь, Буддизм, буддхи, будущее, будущее Вселенной, будущее Солнечной системы, вакуум, Великий обет, вещество, виртуальный, влияние на судьбу, внеземная цивилизация, Вселенная, всемирный потоп, воплощение, время, Высший Разум, Высшие Знания, галактика, геологические периоды, Гермес Трисмегист, гиперон, гипноз, головной мозг, гороскоп, гравитационные волны, гравитация, гуна, Дао, двойник, деперсонализация, дефект массы, демон, Дзэн-буддизм, добро зло, ДНК, Древние Знания, дрейф материков, Дух, душа, дхьяна, дьявол, Единая Теория Поля, жизнь, заболевания психики, зарождение жизни, звезда, земная жизнь, знание будущего, знания, зомби, зомбирование, изменение судьбы, измененные состояния сознания, измерение вещества, Изумрудная Скрижаль, иммунная система, инстинкт, интеллект, интуиция, искривление света, ис

    К стержню из карбида бора, сильно поглощающего нейтроны , подвесили графитовый вытеснитель длиной 4,5 м.

    Замещение этих столбов графитовым вытеснителем, слабее поглощающим нейтроны , и создает местный реактор.

    Минимальный размер Минимальный размер живого косного естественного тела естественного тела определяется дисперсностью определяется дыханием, материи-энергии - атомом, главным образом газовой электроном, корпускулой, биогенной миграцией атомов нейтроном и т.

    Идея долгоживущего компаунд-ядра позволила Бору предвидеть, что подходящими окажутся даже совсем медленные нейтроны .

    Структурное различие между ними сводится к числу входящих в них протонов, нейтронов , мезонов и электронов, однако каждое очередное прибавление к системе пары протон-электрон резко меняет функциональные свойства всей совокупной единицы в целом и это является наглядным подтверждением регламентированности числа фн.

    Реактор РБМК-1000 - это реактор канального типа, замедлитель нейтронов - графит, теплоноситель - обычная вода.

Что такое нейтрон? Такой вопрос чаще всего возникает у людей, которые не занимаются ядерной физикой, ведь под нейтроном в ней понимают элементарную частицу, которая не имеет электрического заряда и обладает массой, превышающей электронную в 1838,4 раза. Вместе с протоном, масса которого немного меньше, чем масса нейтрона, он является "кирпичиком" атомного ядра. В физике элементарных частиц нейтрон и протон полагаются двумя разными формами одной частицы - нуклона.

Нейтрон присутствует в составе ядер атомов для каждого химического элемента, исключение составляет лишь атом водорода, ядро которого представляет собой один протон. Что такое нейтрон, какое строение он имеет? Хотя он и называется элементарным "кирпичиком" ядра, но все же имеет свою внутреннюю структуру. В частности, он относится к семейству барионов и состоит из трех кварков, два из которых являются кварками нижнего типа, а один - верхнего. Все кварки имеют дробный электрический заряд: верхний заряжен положительно (+2/3 от заряда электрона), а нижний - отрицательно (-1/3 электронного заряда). Именно поэтому нейтрон не имеет электрического заряда, ведь он у составляющих его кварков просто компенсируется. Тем не менее, магнитный момент нейтрона не равен нулю.

В составе нейтрона, определение которого было дано выше, каждый кварк соединен с остальными с помощью глюонового поля. Глюон является частицей, ответственной за образование ядерных сил.

Помимо массы в килограммах и атомных единицах массы, в ядерной физике массу частицы описывают также в ГэВ (гигаэлектронвольтах). Это стало возможным после открытия Эйнштейном своего знаменитого уравнения E=mc 2 , которое связывает энергию с массой. Что такое нейтрон в ГэВ? Это величина 0,0009396, которая немного больше аналогичной для протона (0,0009383).

Стабильность нейтрона и ядер атомов

Присутствие нейтронов в атомных ядрах очень важно для их стабильности и возможности существования самой атомной структуры и вещества в целом. Дело в том, что протоны, которые также составляют атомное ядро, имеют положительный заряд. И сближение их на близкие расстояния требует затрат огромных энергий ввиду кулоновского электрического отталкивания. Ядерные же силы, действующие между нейтронами и протонами на 2-3 порядка сильнее кулоновских. Поэтому они способны удерживать положительно заряженные частицы на близких расстояниях. Ядерные взаимодействия являются короткодействующими и проявляют себя только в пределах размеров ядра.

Формулу нейтронов используют для нахождения их количества в ядре. Она выглядит так: количество нейтронов = атомная масса элемента - атомный номер в таблице Менделеева.

Свободный нейтрон - это частица нестабильная. Среднее время его жизни составляет 15 минут, после чего он распадается три частицы:

  • электрон;
  • протон;
  • антинейтрино.

Предпосылки открытия нейтрона

Теоретическое существование нейтрона в физике было предложено еще в 1920 году Эрнестом Резерфордом, который пытался таким образом объяснить, почему атомные ядра не разваливаются из-за электромагнитного отталкивания протонов.

Еще раньше, в 1909 году в Германии, Боте и Беккер установили, что если альфа-частицами больших энергий от полония облучать легкие элементы, например, бериллий, бор или литий, то образуется излучение, которое проходит через любую толщину различных материалов. Они предположили, что это излучение гамма, однако ни одно подобное излучение, известное на тот момент, не обладало такой большой проникающей способностью. Эксперименты Боте и Беккера не были интерпретированы должным образом.

Открытие нейтрона

Существование нейтрона было обнаружено английским физиком Джеймсом Чедвиком в 1932 году. Он изучал радиоактивное излучение бериллия, провел серию экспериментов, получив результаты, которые не совпадали с теми, что предсказывали физические формулы: энергия радиоактивного излучения намного превосходила теоретические значения, также нарушался закон сохранения импульса. Поэтому необходимо было принять одну из гипотез:

  1. Либо момент импульса не сохраняется при ядерных процессах.
  2. Либо радиоактивное излучение состоит из частиц.

Первое предположение ученый отбросил, поскольку оно противоречит фундаментальным физическим законам, поэтому принял вторую гипотезу. Чедвик показал, что радиационное излучение в его экспериментах образовано частицами с нулевым зарядом, которые обладают сильной проникающей способностью. Кроме того, он смог измерить массу этих частиц, установив, что она немного больше таковой для протона.

Медленные и быстрые нейтроны

В зависимости от энергии, которой обладает нейтрон, он называется медленным (порядка 0,01 МэВ) или быстрым (порядка 1 МэВ). Такая классификация важна, поскольку от скорости нейтрона зависят некоторые его свойства. В частности, быстрые нейтроны хорошо захватываются ядрами, приводя к образованию их изотопов, и вызывая их деление. Медленные же нейтроны плохо захватываются ядрами практически всех материалов, поэтому они могут беспрепятственно проходить сквозь толстые слои вещества.

Роль нейтрона в делении ядра урана

Если задаваться вопросом, что такое нейтрон в ядерной энергетике, то можно с уверенностью сказать, что это средство индуцирования процесса деления ядра урана, сопровождаемое выделением большой энергии. Во время этой реакции деления также порождаются нейтроны различных скоростей. В свою очередь образованные нейтроны индуцируют распад других ядер урана, и реакция протекает цепным образом.

Если реакция деления урана будет неконтролируемой, то это приведет к взрыву реакционного объема. Данный эффект используется в ядерных бомбах. Контролируемая реакция деления урана является источником энергии в ядерных электростанциях.

НЕЙТРОН
Neutron

Нейтрон – нейтральная частица, относящаяся к классу барионов. Вместе с протоном нейтрон образует атомные ядра. Масса нейтрона m n = 938.57 МэВ/с 2 ≈ 1.675·10 -24 г. Нейтрон, как и протон, имеет спин 1/2ћ и является фермионом.. Он имеет и магнитный момент μ n = - 1.91μ N , где μ N = е ћ /2m р с – ядерный магнетон (m р – масса протона, использована Гауссова система единиц). Размер нейтрона около 10 -13 см. Он состоит из трёх кварков: одного u-кварка и двух d-кварков, т.е. его кварковая структура udd.
Нейтрон, являясь барионом, имеет барионное число В = +1. Нейтрон нестабилен в свободном состоянии. Так как он несколько тяжелее протона (на 0.14%), то он испытывает распад с образованием протона в конечном состоянии. При этом закон сохранения барионного числа не нарушается, так как барионное число протона также +1. В результате этого распада образуется также электрон е - и электронное антинейтрино e . Распад происходит за счёт слабого взаимодействия.


Схема распада n → р + е - + e .

Время жизни свободного нейтрона τ n ≈ 890 сек. В составе атомного ядра нейтрон может быть столь же стабилен, как и протон.
Нейтрон, будучи адроном, участвует в сильном взаимодействии.
Нейтрон был открыт в 1932 г. Дж. Чедвиком .

Новое на сайте

>

Самое популярное